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Ohmic contact technology in Il nitrides using polarization effects
of cap layers
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A technology for low-resistance ohmic contacts to Ill nitrides is presented. The contacts employ
polarization-induced electric fields in strained cap layers grown on lattice-mismatched IlI-nitride
buffer layers. With appropriate choice of the cap layer, the electric field in the cap layer reduces the
thickness of the tunnel barrier at the metal contact/semiconductor interface. Design rules for
polarization-enhanced contacts are presented giving guidance for composition and thickness of the
cap layer for different Ill-nitride buffer layers. Experimental results for ohmic contactsmwiipe

InGaN and GaN cap layers are markedly different from samples without a polarized cap layer thus
confirming the effectiveness of polarization-enhanced ohmic contact0@ American Institute

of Physics. [DOI: 10.1063/1.1504169

INTRODUCTION layer combinations including the composition and thickness

. . - . . of the cap layers. Experimental results are presented that
Ohmic contacts with specific contact resistances in the L o .

4 . ) -~ . Show the viability of polarization-enhanced ohmic contacts.
104 Qcn? range or smaller are imperative to minimize

. . o .._InGaN caps on GaN, and GaN caps on AlGaN, significantly

parasitic voltage drops and to increase the reliability and life- .

. . . . - : reduce the contact resistances as compared to contacts not

time of optoelectronic devices such as light-emitting diodes _..._.
: : . utilizing cap layers.

and lasers. Ohmic contacts in most semiconductors are

achieved by heavily doping the contact region thereby reduc-

ing the tunnel-barrier thickness at the metal/semiconductor

interface. THEORY

The wide band gap and large electron affinity of 11l ni- , o , ) o i
trides compared to other Ill-V semiconductors such as GaAs 1€ m%qultude of polarization fields in 1ll nitrides is
generally result in high Schottky barriers for metal contactsVell known-"~**The piezoelectric polarization of a general-
to p-type andn-type material. In addition, the large thermal 128d wurtzitic lll nitride cap layeiX,Y; N (X and repre-
activation energy op-type dopants in Ill nitridesmakes it ~ S€Nt & group-Ill element such as Al, Ga, oj frseudomor-
difficult to create heavily doped layers with high free-hole Phically grown on a relaxed buffer layer depends on the
concentrations. It is therefore particularly challenging toStrain in the basal plane of the Wurtzite crystal

form low-resistance ohmic contacts petype Il nitrides. e, (X)=[ays—a(x)]/a(x)=Aala )

Several approaches have been used to fabricate low-. _ .
resistance ohmic contacts ftype lli-nitride compounds with the equilibrium lattice constants of the buffay,, and

such as deposition of high-work function metals with subse-the cap layera(x) Values of the equilibrium lattice constant

quent alloying at elevated temperatueteposition of con- and strain for different Ill nitrides are given in Table | and
ductive oxide€, and various types of surface treatmehts. 19 1. By taking into account second order effects, the pi-
A completely different approach to reduce the tunne“ngezoelectrlc polarizations along tleedirection of strained bi-

H 3
barrier width is based on the use of strained cap layers arary layers can be written &s
superlattices pseudomorphically grown on top of the Ill ni- PRz =[—1.80&, +5.6242] Cm 2 for &, <O,
tride semiconductor of intere&t® Strain-induced as well as (23
spontaneous polarization result in electric fields that tilt the

T _ _ 2 —2
conduction and valence bands in the cap layers in such away Pan=[—1.80&, ~7.88&] Cm™* for & >0,

that tunneling of charge carriers through the barrier can be (2b)
drastically enhanced. A significant advantage of this ap-  pPz —[—0.918&, +9.541°] Cm?, (20)
proach is its limited reliance on doping, the metallization

type, and annealing conditions. PP2 =[—1.373, +7.55%%] Cm2 (2d)

In this vvprk, the_theory of polarlza.tlonjenhanced Ohm'_cwith the piezoelectric polarization in a straingstnary layer
contacts using strained cap layers is discussed. Practic Cm?) given by a Vegard law

guidance is given for the selection of suitable cap/buffer
Py, nOO=XPELe (0]+(1-X)PYe ()] (3)

3Electronic mail: gessmann@bu.edu The spontaneous polarization can be expressétl by
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TABLE |. Cap/buffer layer combinations for polarization-enhanced ohmic contacts to Ga-faced wurtzitic Ill-
nitride semiconductors. Upper-diagonal elements are combinations resulting in a compressively strained cap
layer suitable forp-type contacts toX,Y;_,N compounds. The diagonal elements of the table contain the
respective in-plane lattice constants taken from Ref. 12. The lower-diagonal elements of the table correspond to
possible combinations decreasing the contact resistancestype material

Cap layer
Buffer layer(Ga face AIN Al,Ga _,N AlyIn; N GaN InGa, _«N InN
AIN 3.1095
A
(3.1986
Al,Ga _,N —0.089%)
A
(3.5848
AlyIn; N —0.4753x)
A
GaN 3.1986
A
(3.1986
In,Ga,_,N +0.3862x)
A
InN 3.5848
A
PSP Gay N(X)=[—0.0%—0.0341—x) where g is the dielectric permittivity of vacuumg,, and
e epyif @re the relative dielectric constants in the cap and buffer
+0.01%(1-x)] Cm?, (4a) layer, respectively, and may be obtained from the relation-
ship ey yv. n(X)=XexnyT (1—X)eyy. Using the boundary
sp . _ _ x¥1-x
Pinca_n(X)=[~0.04%=0.0341x) condition D, ¢o= Dy purr @t the cap/buffer interface with,
+0.03%(1-x)] Cm2, (4b) denotipg t.he component d normal to the interfaceP”
=CEcapls given by
PZ?Xml,XN(X):[_0-09(_0-0431_X) .
grol= —PPZ_psP 4 psp ) e 6
+0.07X(1-x)] Cm™2. (40) soscap( cap Peapt Poun) Ecap "N ©

To obtain the electric field*® in the cap layer caused by the The field &4 will be screened by free charge carriers as

spontaneous and piezoelectric polarization fi&ds, Pih,
andPgy,,
sample is negligible; thereforéD=0 with D being the di-
electric displacement field. The displacement fieldlg in

the cap and buffer layers may be writtert“as

Di=¢gpg; &+ PP+ PP (i=cap, buff, (5)
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FIG. 1. Elastic strairz in the basal plain of Ga-faced, ,Y,N compounds

soon as the tilted conduction or valence bands in the buffer

it is assumed that the free charge density inside théayer come close to the Fermi level; this condition allows to

obtain an upper limit fo&,# according to

EG buff
Eputdpuir= é ,

)

where e is the elementary electric charge a&g ., and
Dy denote the band gap energy and the thickness of the
buffer layer, respectively. For GaN and thicknesskg:
>300 nm the value of the field, is about 16 V/m or
smaller; this may be neglected compared to typical values
P%YkXN/(sOsXXYPXN)>108 ViIm in  strained I
nitrides!~1 Equation(6) may therefore be approximated

5p0I~

oo~ Pl Pt PR ®
It turns out that focompressive straife <0, see Fig. },

£P° as obtained from Eq(8) points along thenegative c

direction of the Ga-faced wurtzite crystal, that is, towards the

substrate. In the case pftype llI-nitride materials this re-

sults in adecreaseof the tunnel barrier thickness and will

therefore be beneficial to attain smaller specific contact re-

pseudomorphically grown as cap layers on top of relaxed Ill-nitride bufferSistances. Table | summarizes possible cap/buffer layer com-

layers. Negative values @f, indicate compressive strain.

binations resulting in compressive strain in the cap layer.
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e
a Eior=EP'+ —SpZDHG, (10b)
Metal  Cap layer Buffer layer caf70
Y ~ ~ 313 €% 23
e (e - E,—Ey==| —mm—— , (100
Ec 0T EBvT5 zsca'ﬁoﬁpzwe
wh?
Er—Eo="% Paprc- (100
‘ 3 Egp In EQ.[10(@)], Eg, cap: Xcapare the band gap energy and
e ‘1’81 / Ey the electron affinity of the cap layeb,, is the work function
of the contact metal; here we use the work function of Ni
®,,=5.2 eV. The ternary band gap energy can be obtained
from
b Ecx.v, N=XEgxnt(1-X)Egyn—bX(1-X), (11)
3 == — Ec 1
B where a bowing parametér=2.5 e\!? is used; the ternary
/-’/ electron affinity may be obtained from linear interpolation of
= 2 7 the respective binary values according to
o, 7,
o1 Xx, Y, N=XXxnt (1=X) xyn- (12)
é Ef In Eqg. [10(c)], Eo—Ey is calculated using the Fang—
5 Ob-oc A . ‘ Howard approximatiol? for energy states in a triangular
E, / /_/,.-""' Ey well. The effective hole masm* in the cap layer is 1.0
1 - 1 Xmg, and# is Planck’s constant divided byn2 Er—E in
V - . p-Ing27Gag 73N(4/20 nm) Eq. [10(d)] is calculated using the high-density approxima-
/-/ on p-GaN tion of the Fermi—Dirac distribution and the two-dimensional
-2 " — p'GaI.\I ) : 17 density of hole statep,p=m*/(m#?).
0O 40 80 120 160 200 240 28 . Tunneling from the contact metal into the cap Iayer_re—
a quires the existence of unoccupied valence band states in the
DEPTH z [A] cap layer. This condition allows one to calculate the mini-
FIG. 2. (a) Schematic band diagram for a polarization-enhanced contac{num thickness of the cap layer
employing a straineg@-type lll-nitride cap layer pseudomorphically grown d.—E./e o
on top of a relaxed lll-nitride buffer layeE, denotes the groundstate en- dmin= _ B =0 _B_ (13
ergy of a 2DHG formed in the triangular barrier at the interface between cap Erot Erot

and buffer layerd is the cap layer thicknesg, is the electric field in the di h . hick ired for the f
strained cap layer, andbg is the Schottky barrier height(b) Self- corresponding to the minimum thickness required for the for-

consistently calculated band diagram for Ni contacts to peigpe GaN and ~ mation of a 2DHG. The approximation in E@3) is valid if
to polarization-enhanced structures consisting of straied ,,Gay ,N cap  quantum-size effects in the triangular potential well at the
layers @=4 nm andd=20 nm on top of relaxedp-GaN. The dopant  cap/huffer layer interface are neglected, in analogy to the
concentration was assumed to bé®i€m 3. . . -
approach in Ref. 16. Thus, E(L3) is the solution of Eq(9)
for popue=0, the onset of the 2DHG.
Figure 2b) shows self-consistently calculated band

For strong enough electric fields or sufficiently thick capdiagrams’ for Iny,/Gay 7N cap layers on GaN with two
layers, the formation of a two-dimensional hole gaBHG)  different cap layer thicknessed=4 nm andd=20 nm, as
at the interface between the cap and the buffer layers wilwvell as the band diagram of bugktype GaN. We assumed a
occur. The density,pne Of the two-dimensional hole gas uniform Mg dopant concentration dyy= 10" cm™3 with
can be calculated by numerically solving the condition foran acceptor activation energy & =50 meV in the capping

the constancy of the Fermi levidee Fig. 29)]: layer obtained by extrapolating the values Bf given in
Ref. 18 towards larger In contents. Nickel was used in the
edg+edyfiort (Eg— Ey) +(Ep—Eg)=0. (9) calculation as the contact metal.

It can be seen that for the thicker cap layer, the Schottky
In Eq. (9), dcap denotes the thickness of the cap lay&g is  parrier width approaches that of bytktype GaN; therefore
the total electric field in the cap laye®p is the Schottky g reduction of the specific contact resistance compared to
barrier height,E,, is the valence band energy at the cap/p_type GaN can be expected.
buffer layer interfaceEr andE, are the Fermi energy and Figure 3 shows the dependence of the electric 218
the energy of the 2DHG groundstate, respectively. The termgy various cap/buffer layer configurations. Also included is
on the left-hand side in Ed9) are given by the dependence af.,,, on the electric field in the cap layer
calculated from Eq(13) assumingé,,=£EP® and using the
ePg=Eg cag= &( Py — Xcap (10a  barrier heightsdg of Ni on GaN @z=2.3 V), InN (Pg
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FIG. 3. Polarization-induced electric fielf® in Ga-facedX;_,Y,N cap -1 ] /
layers pseudomorphically grown on different buffer laystsain relaxation /
due to critical thickness effects is not taken into accpuNegative values 2 1 /
indicate that thecP® vector points towards the buffer layer. The dashed-

dotted curves correspond to the cap layer thickmggs given by Eq.(9) —— /

using Schottky barrier heightsbg for Ni on GaN edg=2.3 eV), on InN 2 _ I-Veurve T=300K ]
(ePg=1.3 eV), and on AIN edz=1.8 ey . As an example, the dashed I p-GaN (reference)
lines indicate how to determine the thicknesg, of an Iny,/Ga ;N cap 1 LiPd/Au-contacts annld. at 500°C /|
layer on GaN.

CURRENT {104 A]
<D

'
—

7

=1.3 V), and AIN (®g=1.8 V). As an example, the mini-
mum thickness of an j/Ga, 74N cap layer on a GaN buffer [ /
layer can be determined to be between 2 and 4 nm.

According to the WKB approximation the tunneling
probability T* through a triangular barrier for holes with
energyE=0 is given by

. p[ 403%2m*e
=exXg ———%7a 7 |-
3o

By using the slope of the valence bandzatO in Fig.
2(b) to estimate the electric fielf,; a tunneling probability
T*~10 8 can be obtained for the cap layer with thickness
d=4 nm, which is much larger than the valli&~ 10?4 for
the 20-nm-thick cap layer. It is therefore prudent to not ex-
ceed the minimum cap layer thicknedg;, by more than a
factor of 2. Several experiments were conducted to confirm the va-

The cap layer will change the barrier height as comparedidity of polarization-enhanced contacts. Here we report on
to a no-cap layer situation. Note, however, that the barriethe marked difference in thie-V characteristic obtained for
thickness is much more important than the barrier heightsamples with and without a cap layer. Detailed experimental
This is because the thickness can vary by a larger factor thastudies on contact resistances have been reported
the barrier height and also because the tunneling probabilitglsewheré:’
has a stronger dependence on the thickness as compared to Metallic contactgNi/Au and Pd/Ay were deposited by
the barrier heighfsee Eqs(13) and (14)]. Therefore, it is electron beam evaporation using lift-off photolithographic
reasonable to assume that the change in barrier height will biechniques. The contacts were square-shaped (@&@sum
of minor importance. X200 um) separated by 2, 4, 6, 8, 10, and 4B wide gaps.

The electric fields€P®' shown in Fig. 3 are similar or To remove surface oxide layers, the samples were treated
even larger than the critical fields, in InN (E.~1x 10 with a buffered-oxide etch or in a solution containing 20%
V/m), GaN (£;~3x10® V/m), and AIN (£,~9%x10° V/m)  HF and 80% HO. Subsequently, the contacts were annealed
obtained from a power law relationship. For doped in a rapid thermal annealing furnace at 500 °C in either ni-
samples, howeve£P° will be reduced by free charge carri- trogen(Pd/Au contactsor oxygen(Ni/Au contact$ ambient.
ers and ionized impurities. In addition,df,,;, approaches the The contact resistances were determined fretd measure-
critical thickness of the cap layer for pseudomorphic growthments using the transfer length meth@d.M).
the onset of elastic strain relaxation will result in further Figure 4 shows thé—V curves of samples with an

CURRENT 1104 A]
fand

r

[ %4

-1 0 1 2
VOLTAGE V [V]

FIG. 4. 1-V curves for ohmic contacts {@type GaN and for polarization-
enhanced contacts utilizing InGaN-on-GaN or GaN-on-AlGaN cap layer
(14) structures. The data are obtained for TLM pads with a separation pfriL.O

reduced fieldscP®. Therefore, minimum cap layer thick-
nesses obtained from Fig. 3 have to be regarded as a lower
limit.

EXPERIMENTAL RESULTS
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Ing,/Gay-N cap layer on a GaN buffer, a GaN-on- layer region. Fomp-type contacts, enhanced by polarization
Al, ,Ga N superlattice structure andpetype GaN reference €effects, the hole tunneling probability through the surface
sample. The thicknesses=2 nm of the InGaN cap layer barrier is increased by more than ten orders of magnitude
andd=10 nm of the GaN cap layer agree well with the compared to bullp-type GaN without cap layer.
respective minimum thicknessek,;, that can be obtained The beneficial effect of cap layers is demonstrated ex-
from Fig. 3. perimentally for an lp,/Ga ;dN-on-GaN structure and a

Inspection of Fig. 4 shows that excellent ohmieV ~ GaN-on-AbGa gN structure. As opposed to mtype GaN
characteristics were found for both samples containing capeference sample, excellent linearity of theV characteris-
layers. However, thé—V characteristic for the-type GaN  tics independent of the choice of contact metallization was
reference sample is markedly nonlinear. This clearly indi-achieved for the polarization-enhanced contacts. The specific
cates the advantageous effect of polarization fields in the cagontact resistances obtained from the TLM-method were
layers. Specific contact resistancepef6x 1073 Qcn? for  =6x10"2 Qcn? for the InGaN cap layer and 710"
the InGaN cap layer and>710 % Qcn? for the GaN cap cn? for the GaN cap layer.
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